A numerical damped oscillator approach to constrained Schrödinger equations
نویسندگان
چکیده
منابع مشابه
An Explicit Unconditionally Stable Numerical Method for Solving Damped Nonlinear Schrödinger Equations with a Focusing Nonlinearity
This paper introduces an extension of the time-splitting sine-spectral (TSSP) method for solving damped focusing nonlinear Schrödinger equations (NLSs). The method is explicit, unconditionally stable, and time transversal invariant. Moreover, it preserves the exact decay rate for the normalization of the wave function if linear damping terms are added to the NLS. Extensive numerical tests are p...
متن کاملnumerical solution of damped forced oscillator problem using haar wavelets
we present here the numerical solution of damped forced oscillator problem using haar wavelet and compare the numerical results obtained with some well-known numerical methods such as runge-kutta fourth order classical and taylor series methods. numerical results show that the present haar wavelet method gives more accurate approximations than above said numerical methods.
متن کاملNumerical Integration of Damped Maxwell Equations
We study the numerical time integration of Maxwell’s equations from electromagnetism. Following the method of lines approach we start from a general semidiscrete Maxwell system for which a number of time-integration methods are considered. These methods have in common an explicit treatment of the curl terms. Central in our investigation is the question how to efficiently raise the temporal conv...
متن کاملNumerical Continuation for Nonlinear SchrÖdinger Equations
We discuss numerical methods for studying numerical solutions of N-coupled nonlinear Schrödinger equations (NCNLS), N = 2, 3. First, we discretize the equations by centered difference approximations. The chemical potentials and the coupling coefficient are treated as continuation parameters. We show how the predictor–corrector continuation method can be exploited to trace solution curves and su...
متن کاملNumerical study of fractional nonlinear Schrödinger equations.
Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass and energy sub- and supercritical regimes can be identified. This allows us to study the possibility of finite time blow-up versus global existence, the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Physics
سال: 2020
ISSN: 0143-0807,1361-6404
DOI: 10.1088/1361-6404/aba70b